HOISTED BY THEIR OWN PETARD

How "Carbon Prejudice" Against Natural Gas
Undermines Decarbonization Goals

"For 'tis the sport to have the enginer Hoist with his own petard"

Defining the Problem

Carbon Prejudice (n.)

<u>Unjustified</u> bias against an energy technology based on its molecular structure (e.g., CH₄) rather than *comprehensive lifecycle* analysis, system efficiency, and contextual appropriateness.

THE PREJUDICE

Natural gas (or even *Bio-Methane*) CHP/CCHP systems rejected purely because they use methane, despite superior outcomes

THE EVIDENCE

Manchester analysis shows CHP can deliver lower emissions, higher efficiency, and better resilience than heat pumps

Prejudice based on ignorance leads to worse climate outcomes

Their "Only Hope" Defence

THE COUNTERARGUMENT

"But the UK grid now has 40-45% renewables! Grid carbon intensity has fallen to ~170 gCO₂/kWh average. Heat pumps are now cleaner!"

Heat Pump (Annual Average Grid)

~68 gCO₂/kWh

170 gCO $_2$ /kWh \div COP 2.5 (summer-winter - realistic average)

CHP/CCHP (Gas Direct)

~80-120 gCO₂/kWh

Net, after electrical generation credit

The Killer Blow: Winter Evening Reality

THE CRITICAL QUESTION

What's powering your heat pump at 6pm on a January evening in Manchester, when you actually NEED heating?

WIND

Variable

Low during high-pressure cold snaps

SOLAR

ZERO

Sunset ~4pm in winter

NUCLEAR

Baseload

Already running, can't ramp

GAS CCGT

394 gCO₂

FILLS THE GAP

MARGINAL CARBON INTENSITY: WINTER EVENING PEAK (4PM-10PM)

Heat Pump (MARGINAL GRID)

158-197 gCO₂/kWh

394 ÷ COP 2.0-2.5 (winter-degraded)

CHP/CCHP (GAS DIRECT)

80-120 gCO₂/kWh

Net, winter-peak efficiency 90-95%

Peak demand 4-10pm weekdays in winter. CCGT marginal intensity: 394 gCO₂/kWh. Sources: NESO Carbon Intensity data 2024

Hoisted By Their Own Petard

The Devastating Irony

Heat pumps during winter peaks are (effectively) gas-powered (via CCGT at 394 gCO₂/kWh) but with three conversion losses and degraded COP of 2.0-2.5. **Meanwhile, CHP operates at peak efficiency (90-95%).**

X HEAT PUMP REALITY

Gas \rightarrow Power Station \rightarrow Grid Losses \rightarrow Heat Pump \rightarrow 158-197 gCO₂/kWh

✓ CHP/CCHP REALITY

Gas → On-site heat + electricity → 80-120 gCO₂/kWh

THE DOUBLE WHAMMY

Heat pumps get WORSE in winter (lower COP) while CHP gets BETTER (peak efficiency). Yet, still, they promote the inferior technology!

Their "carbon prejudice" is mathematically counterproductive

Analysis: Manchester heating demand, winter 2024-25. Based on UK grid marginal intensity during peak heating hours.